# J/ $\psi \rightarrow e^+e^-$ Measurement in d+Au Collision at $\sqrt{s_{NN}} = 200$ GeV

# S. Kametani for the PHENIX collaboration

# Physycs motivation

- Quark Gluon Plasma
  - New phase of matter created at high density/temperature.



- Deconfined quarks and gluons are freed from hadron confinement
- Deconfinement of hadron leads to
  - J/ψ suppression in QGP
    - Initial J/ $\psi$  "melt" in QGP because of color Debye screening
  - J/ψ enhancement at hadronization
    - Mobility of heavy quarks in the deconfined region leads to recombination into charmonium

## PHENIX year-3 run

- d+Au collision
  - Base study on nuclear effect is required for heavy ion collision in normal matter to qualify QGP effect!
    - Absorption in nuclear matter
    - Shadowing effect in large |x<sub>F</sub>|
  - These effects are more apparent as Nucleus is large. (as Number of participants in collision is large)



CERN NA50 experiment in p+W at 200GeV/c J/w

$$\sigma_{J/\psi}^{\text{abs}} = 4.3 \pm 0.6 \text{mb}$$

#### PHENIX setup

- Vertex, Centrality
  - Beam Beam Counter
- Tracking
  - Drift Chamber
  - Pad Chamber
- Energy measurement
  - EM Calorimeter
- Electron ID
  - RICH
    - eID  $p_T$  range : 0.2 ~ 4.9 GeV/c
- Trigger
  - BBC for collision and event vertex
  - RICH + EMC mix (ERT) for electron trigger



# Data analysis

- Analyzed 3.5×10<sup>6</sup> Electron triggered events.
- Electron ID efficiency and Trigger efficiency are well studied.
- For acceptance calculation, used Run-2 simulation.
- As RICH can not separate electron and pion at p<sub>T</sub>
  5 GeV/c, only the tracks with p<sub>T</sub> < 5GeV/c were picked up</li>

## Invariant mass spectrum



Invariant mass spectrum for electron pairs



The unlike-sign pair spectrum (e<sup>+</sup>e<sup>-</sup>) after subtraction of like-sign pairs (e<sup>+</sup>e<sup>+</sup> or e<sup>-</sup>e<sup>-</sup>) as combinatorial background.

Finally, 400 J/ψ could be reconstructed.

## Preliminary results



Preliminary result of invariant cross section vs. pt for RUN3 d+Au and p+p.



Ratio of cross section per binary collision of each centrality divided by that of most peripheral collision

# Studies ongoing

- More qualified analysis
  - Trouble shooting in bad data quality events
  - Run-3 based simulation
    - Correct acceptance
    - Response tuning



RICH ring in real data and in simulation

# Summary

- Yield of J/ψ could be modified by the appearance of QGP in RHIC
- To understand modification in hot matter, yields and nuclear effect should be quantified.
- PHENIX collected 400 J/ψ in Run-3 experiment
- preliminary result for d+Au was shown